If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+36x+24=0
a = -4.9; b = 36; c = +24;
Δ = b2-4ac
Δ = 362-4·(-4.9)·24
Δ = 1766.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-\sqrt{1766.4}}{2*-4.9}=\frac{-36-\sqrt{1766.4}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+\sqrt{1766.4}}{2*-4.9}=\frac{-36+\sqrt{1766.4}}{-9.8} $
| (3x+5)+(2x+5)=90 | | (6x+7)+(5x+8)=180 | | (9x+17)+(6x+13)=180 | | (4x+3)+(4x+7)=90 | | 3(4x+2)=6(2x=1) | | (5x+14)+(3x+20)=90 | | b+61/6=31/2 | | 4n+n=315 | | h=-16^2+64+192 | | X2+17x+120=180 | | 45+.20x=30+.25x | | 599.01+d=686.98 | | 0=9-5x | | -2(2x+3)=-4(x+1)-1 | | (8x+12)+(4x+6)=90 | | 7b-35+5b+20=45 | | X+1+3+x+1=4(x+1) | | 98x+12)+(4x+6)=90 | | 1/2r=-5/12 | | 3x+10/5=20 | | 2r-3=12 | | 2x-2+8=4x-20 | | 4t-0.8t^2=0 | | 4v(v+5)(v+9)=0 | | 1/9m-1=8 | | (x+9)^2=29 | | (1/9)m-1=8 | | 6.95x+16.2-2.36x=3.2x+13 | | 3x-20+3x-20=180 | | x+48+2x-16+x=180 | | 0.3b+5=20-b | | 17x+5=7x |